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Motivation

Imaging data — statistical methods to look
for “regional effects”

Tissue differences between groups or
over time — VBM, TBM (voxel/tensor-based
morphometry)

PET (positron emmission tomography),
fMRI (functional MRI) — determine
“activation” in the brain due to thought,
stimulus or task

Diffusion (DWI, DTI, tractography), Bone
mineral density etc. etc.



FMRI Data:
Set of Volumes (over time) or
Set of Time-Series (over space)
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Software etc.

SPM - PET, fMRI, VBM and TBM, EEG/MEG
(http://www.fil.ion.ucl.uk/spm/ needs Matlab)

FSL — fMRI primarily + DTI
(http://www.fmrib.ox.ac.uk/fsl/)

R — AnalyzeFMRI package + linear models In
general (http://www.r-project.org/ and then go
to your nearest CRAN mirror)

Also, check “Venables and Ripley” Splus
book + many R books (see R web site) +
online tutorials




Challenges

Generating suitable (statistical)
imaging models

Dealing with highly multivariate
responses (curse of dimensionality)
Defining imaging “hypotheses”
Creating computationally efficient
analysis procedures



Aims of Statistical Modeling

Summarize data

Estimation: point and interval estimates
Inference: hypotheses / relationships
Prediction
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Statistical Modeling Strategy

* Propose a model for the data
* Fit the model

 Assess the model’s adequacy
* Fit other plausible models
 Compare all fitted models

* Interpret the best model



Statistical Models: Definitions

* Univariate response variable y. (for exp. unit i)

. _ T
* Covariates (x,, x,..., x;,) = X,

l

(variables of interest and “nuisance” variables)
 Data is: {y,.,XZ.T;i= 1,-..,n}, n experimental units

Continuous covariates: e.g. age, blood pressure
etc., (random or controlled)

Factors: e.g. diagnosis, gender, drinking level
(low, medium, high) etc.



The (General) Linear Model

A simple linear model might take the form:
y.=B +x B, +x.B +..+x B +¢&
e.g.
yi — ﬁmean + xi,ageﬁage + xi,gender ﬁgender ...t xi,diagnosis ﬁdiagnosis + 81’

e ~N(,0%), iid. i=1,..,n
i.i.d. = independently and identically distributed



The (General) Linear Model

For univariate data:
y. =X;FB € i=1,...,n

B — (ﬁp'“aﬁm)T

or in matrix notation

y=XB+¢

This can be extended to a multivariate response

Y=X'B+E

is a set of unknown parameters



Ex. Hippocampal Volume
HCV ~ Age + Diagnosis

(Wilkinson notation)

Diagnosis can be
normal control
(NC) or
Alzheimer’s
disease (AD)
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normal control
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Alzheimer’s
disease (AD)




Structural T1 weighted MRI’s
Hippocampal volumes manually traced
Volume measure = response for each subject

Disease status encoded 1 for AD and 0 for NC
(the xdl.ag.term)



yi = ﬁl T xi,ageﬁage T xi,diag.ﬁdiag. T xi.agexi,diag.ﬁinter T 81’

Case 1
ﬁage — O’ ﬁdiag. — O’ ﬁinter — O

HCV

age
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yi — ﬁO + xi,age age T xi,diag.ﬁdiag. + xi.age‘xi,diag.ﬁinter + 81’

Case 3
ﬁage 7 O’ ﬁdiag. 7 O’ ﬁinter — O

HCV

~ NC
AD
age



yi — ﬁO + xi,age age T xi,diag.ﬁdiag. + xi.age‘xi,diag.ﬁinter + 81’

Case 4
ﬁage 7 O’ ﬁdiag. 7 O’ ﬁinter 7 O

HCV

NC

AD

age



yi = ﬁl T xi,ageﬁage T xi,diag.ﬁdiag. T xi.agexi,diag.ﬁinter T gi

Case 4
ﬁage 7 O’ ﬁdiag. 7 O’ ﬁinter 7 O
HCV
X x X X
X X % % NC
X % X X
% > X
X AD

age



Linear models can be more general
- only needs to be linear in the parameters: [3

We can have:
— 2 1
yi - xageﬁl T xageﬁZ T eXp(xheight)ﬁ3 T xagexheightﬁ4 T Si

i=1,...n



Estimation

Minimize squared error (Least Squares Error)
= Maximum Likelihood Estimation
A for linear model
B=(X"X)" X"y
EPB)=
V(B)=0’(X"X)"
. 2
Estimate ¢ by or divide by -1
n estimate




Inference — Model Comparison
Take linear model
y=XB+e¢
And add constraint A =c

this defines a new model that is a
simplification of the previous one



Inference — Model Comparison
E.g., cf. model Y. = 131 + lexil 4+ 'B3xi2 + €,

to simplification with '33 = ()

\ ie.y.=p +[0x +€

(09091) ﬁz =0 l.e. Aﬁ:C
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And what about [ =[5, ?

AB=c = (01-1)| B, |=0

\'83/

Are 2 different conditions equivalent?
E.g. is the activation effect: reading a
word vs imagining the object equal?



Definition: Linear model nested in
another if 15t model can be obtained by
linear constraint on the 2nd

Nesting tree:
age + gender

N

age gender

~

null



F-test for General Linear
Hypothesis

y=XB+e &~ Nn(O,Gzln)

Consider

H,:AB=c

This is the General Linear Hypothesis



Under H,ie, AB=c

— (Devnested - Devlarger) / (p larger —pP nested) N F

(DCV larger ) / (n - P larger ) Prarger ™ Prested >"'™ Plarger

F

p denotes the number of model parameters
n denotes the number of data points
Dev = Deviance = sum of squares of residuals

Tests ratio of variances



FMRI Data:
Set of Volumes (over time) or
Set of Time-Series (over space)

Serial
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Snapshots of &
Volunteers
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Time



image data
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Estimation

The estimation entails finding the parameter
values such that the linear combination best fits
the data
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Parameter Estimates

« Same model for all voxels
» Different parameters for each voxel
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Spatial Hypotheses

Question - how do we extend from standard univariate
hypotheses to answering spatially motivated questions?

Not easy - curse of dimensionality (millions of voxels)

A 2D

A B 5

e

1D X

in 1D it makes sense to infer A is less than B, but what
is the equivalent in 2D?



Spatial Testing Solutions

Summarize the image into one dimensional
quantities for testing (e.g. region of interest
analysis)

Consider the overall test as a combination of
individual voxel tests (voxel based analysis)

Perform shape/object analysis on objects
defined via landmarks

Build Bayesian image analysis models
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Voxel based analysis

Each voxel obtains a test statistic from the
linear model, e.g.ror F

Forms statistical maps of the statistics



image data
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Hypothesis Testing

* Null Hypothesis 4,

* Test statistic T
— t observed realization of T
* o-level
— Acceptable false positive risk
—Level a=Pr( T>u,| H,)

— Threshold u,, controls false positive risk at
level o




Multiple Comparisons Problem

Which of 100,000 voxels are
significant?
— o =0.05 = 5,000 false positive voxels



Assessing Statistic Images
Where’s the signal or change?

High Threshold  Med. Threshold Low Threshold

Good Specificity Poor Specificity
Poor Power (risk Otf false
(risk of false positives)

negatives) Good Power

How can we determine a sensible threshold level?



Multiple Comparison Solutions:
Measuring False Positives

 Familywise Error Rate (FWER)

— Familywise Error
» Existence of one or more false positives
* False Discovery Rate (FDR)
— FDR = E(V/R)
— R voxels declared active, V falsely so
Realized false discovery rate: V/R



Bonferroni Correction

FWE, «, for N independent voxels is a = Nv (v = voxel-
wise error rate)

To control FWE set v=0a/N

Independent Voxels Spatially Correlated Voxels

100

90

10 20 30 40 50 60 70 80 90 100
Pixel position in X

Bonferroni is too conservative for brain images



FWER MCP Solutions:
Random Field Theory

» Euler Characteristic y,

— Topological Measure
 #blobs - #holes

— At high thresholds,
just counts blobs Random Field

— FWER = Pr(Max voxel zu | H)

No holes : = Pr(One or more blobs | H))
~Pr(y, 21| H,)

Never
= E(Xu | Ho)

more than
1 blob

See description at http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields

Suprathreshold Sets




Random Field Theory

Limitations

— Virtually impossible to check

Sufficient smoothness
— FWHM smoothness 3-4 x voxel size

Smoothness estimation

— Estimate is biased when images not
sufficiently smooth

Several layers of approximations

Lattlce Image
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Multiple Comparisons Solutions:
Measuring False Positives
 Familywise Error Rate (FWER)

— Familywise Error
» Existence of one or more false positives

— FWER is probability of familywise error
* False Discovery Rate (FDR)
— FDR =E(V/R)

— R voxels declared active, J falsely so
* Realized false discovery rate: I'/R



False Discovery Rate

 For any threshold, all voxels can be cross-
classified:

Accept Null Reject Null
Null True Vo Vor
Null False Vi Vig
NA NR

 Realized FDR
rFDR =V, /(V,p+tVp) = Vp [Ny
— If N,=0, rFDR=0
* But only can observe N,, don’tknow //,, & I/,

— We control the expected rFDR
FDR = E(rFDR)



False Discovery Rate
lllustration:

Noise

Signal
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Control of Per Comparlson Rate at 10%

11.3% 11.3% 12 5% 10.8% 11.5% 10.0% 10 7% 11.2% 10.2% 9.5%
Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%
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FWE

Occurrence of Familywise Error

Control of False Dlscovery Rate at 10%

afa

6.7% 104% 14.9% 9.3% 16.2% 1.8°/o 14.0% 10.5% 12.2% 8.7%

Percentage of Observed “Above Threshold” Pixels that are False Positives



Benjamini & Hochberg
Procedure Journal of the Royal

Statistical Society — Series B
(1995) 57:289-300

Select desired limit ¢ on FDR
Order p-values, p;,<p, < ... <pg,
Let » be largest ;i such that

P < iV X gle(V)

* Reject all hypotheses
corresponding to

Pqy - > P

'V xq/c(V)

NB, no spatial consideration



Also, Non-Parametric
Testing

 If H,is true then time order irrelevant
(if noise really iid)

* Therefore permute the timepoints
and obtain test statistics

* If true test statistic is extreme
compared to others then reject 1,



Types of Spatial Inference

Individual voxel level
Cluster level

Set level

Bayesian model based



Voxel-level Inference

* Retain voxels above o-level threshold u,

* Gives best spatial specificity
— H, at a single voxel can be rejected

3N \Waa
/
- /A\/ \AN Vspate
Significant/ \o significant

Voxels Voxels




Cluster-level Inference

 Two step-process
— Define clusters by arbitrary threshold u

— Retain clusters larger than o-level
threshold &,

- /A\/ A/ space
Cluster not/k k\ Cluster

significant o significant

clus




Cluster-level Inference

* Typically better sensitivity
 Worse spatial specificity
— The null hyp. of entire cluster is rejected

— Only means that one or more of voxels
In cluster active

¢ //\\/ ................ \W2V, Spase
Cluster not/k k\ Cluster

significant o significant




Set-level Inference

 Count number of blobs ¢
— Minimum blob size &
 Worst spatial specificity
— Only can reject global null hypothesis

uCIUS ﬁ
>

- / S \/\/ ~ space
H

Here c = 1; only 1 cluster larger than &



Review:
Levels of inference & power

SPM intensity

>
SPM position

m—— : significant at the set level
== mm = : significant at the cluster level L, > spatial extent threshold

NEmmEEL : significant at the voxel level L, < spatial extent threshold

Sensitivity

©

Test based on

Parameters
set by the user

The intensity of a
voxel

* Low pass filter

The spatial extent above u
or the spatial extent and the
maximum peak height

* Low pass filter
* intensity threshold u

The number of clusters
above u with size greater
than n

* Low pass filter
¢ intensity thres. u
« spatial threshold n

The sum of square of the
SPM or a MANOVA

* Low pass filter

Regional
specificity

®




A flexible Bayesian Approach

* Model the form of activity

* Provides an “adaptive thresholding”
approach

2\ /
AR VY \AN Vspate
Active voxels



Bayesian Model
y=zXx+E€

y = data, parameter estimates of statistics
z = binary activation map — modeled as a MRF

x = activation level field — modeled as a MRF
€ =residual error

MRF = Markov Random Field (similar random
field but defined on a lattice)



Model lllustration




Model lllustration

zx fit






Other Topics and Omissions

 Hemodynamic response function

* Multiple subjects (random and mixed
effects models)

« PCA, ICA

* Multivariate analysis with variogram
modeling

« Space-time modeling



